Chunxin's Blog

linear guide bearing block

Home

linear guide bearing block

  • How to Choose the Best Solution for Precision Motion Systems Mar 07, 2025
    As the core transmission component in industrial automation and precision equipment, the selection of linear guides is directly related to the accuracy, efficiency, life and stability of the equipment. This article will provide engineers with a systematic selection reference from the aspects of selection principles, key parameters, steps and precautions, combined with actual application scenarios. Analysis of key parameters before selection 1. Load capacity and direction Load type: It is necessary to clarify the static load (vertical and lateral force) and dynamic load (inertia force caused by acceleration) borne by the equipment. Load direction: Linear guides can usually withstand four-way loads, but the raceway layout and slider distribution of the guides need to be selected according to the actual force direction. Torque balance: The center of gravity position and torque need to be calculated in complex applications to avoid deformation or shortened life of the guides due to uneven force. 2. Accuracy level Select ordinary level (±50μm), precision level (±10μm) or ultra-high precision level (±5μm) according to application requirements. For example, semiconductor equipment requires nanometer-level positioning accuracy, and ultra-high precision guides should be selected. 3. Guide type and material Type selection: Rolling guide (ball/roller): low friction, high speed, suitable for high-speed processing and precision positioning. Sliding guide: strong load-bearing capacity, suitable for heavy-load and low-speed scenarios. Material adaptation: Carbon steel: high load-bearing, suitable for heavy industry; Stainless steel: corrosion-resistant, suitable for humid or corrosive environments; Aluminum alloy: lightweight, suitable for medical equipment or light-load scenarios. 4. Environmental adaptability   Environments such as high temperature, humidity, dust or corrosive media require high-temperature resistant coatings, sealed dustproof designs or special lubrication solutions.    Linear guide selection steps 1. Clear requirements Determine the movement speed, acceleration, stroke length and installation space limit of the equipment28. 2. Calculate load and life Calculate the load capacity of the guide according to the load formula (such as static rated load and dynamic rated load), and refer to the life calculation formula provided by the manufacturer (such as rated life L10) to evaluate the maintenance cycle. 3. Select guide specifications Guide width: The wider the width, the stronger the rigidity and load capacity. Common specifications are 15mm to 45mm. Preload level: no preload, light preload, medium preload or heavy preload. The higher the preload, the stronger the rigidity, but the friction resistance increases. 4. Lubrication and maintenance design Choose a centralized lubrication or self-lubricating system, clean dust regularly and add grease to reduce wear.   Typical application scenarios and selection cases 1. CNC machine tools Requirements: high repeatability (±5μm), high rigidity. Selection: Ultra-high precision roller guide, carbon steel, heavy preload design, with closed-loop feedback system. 2. Industrial robot Requirements: flexible movement with multiple degrees of freedom, resistance to frequent start and stop. Selection: low friction ball guide, stainless steel, dustproof sealing structure. 3. Semiconductor equipment Requirements: nano-level positioning, resistance to clean room environment. Selection: air-floating guide or magnetic suspension guide, ultra-high precision grade, dust-free lubrication solution. Common misunderstandings and precautions in selection Ignoring the impact of dynamic load: only considering static load may cause the guide to fail due to inertial force overload during high-speed movement. Excessive pursuit of high precision: Using ultra-high precision guides in non-precision scenarios will increase costs, and ordinary grades can meet the needs. Insufficient environmental adaptation: Failure to select protective design for dust or corrosive environments will greatly shorten the life of the guide. Improper installation and maintenance: Inadequate preload adjustment or lack of lubrication will directly affect motion accuracy and stability. Summary The selection of linear guides needs to comprehensively consider multiple factors such as load, accuracy, environment, cost, etc., and flexibly adjust them according to the actual application scenarios. Through scientific calculation, reasonable matching parameters and regular maintenance, the performance of the guides can be maximized and the life of the equipment can be extended. It is recommended to fully communicate with suppliers and engineers at the beginning of the selection, and use professional tools (such as load calculation software) to optimize the solution to ensure a balance between efficiency and reliability. If you need to know more about specific model parameters or application cases, you can refer to the selection manual or technical documents provided by the manufacturer.
  • Do you know the uses of linear guides?
    Do you know the uses of linear guides? Aug 28, 2025
    Linear guides have a wide range of applications. They are the "backbone" and "blood vessels" of modern industrial equipment and precision machinery. Their core mission is to provide high-precision, high-rigidity, and high-efficiency linear motion.   I. Core Application Areas 1. CNC Machine Tools - The "Main Field" This is the most classic and important application area for linear guides. They directly determine the machining accuracy and speed of machine tools. Purpose: Controls the movement of key components such as the turret, spindle, and worktable. Specific Equipment: Machining centers, CNC milling machines, lathes, grinders, EDM machines, etc. Function: Enables precise positioning and rapid movement of tools or workpieces in the X, Y, and Z axes, completing the cutting of complex parts.   2. Industrial Robots - "Flexible Joints" Purpose: Serves as the robot's seventh axis (ground rail), extending the robot's travel distance and operating range. Used in linear motion joints within robot arms, they enable precise and smooth extension and retraction. Function: Provides reliable basic linear motion for robots, widely used in robotic workstations for handling, welding, painting, assembly, and other tasks.   3. Electronics and Semiconductor Manufacturing Equipment - "King of Precision"   Purpose: Positioning and moving precision components such as chips, wafers, and circuit boards.   Specific Equipment: Semiconductor lithography machines, chip packaging machines, surface mount (SMT) machines, wire bonders, wafer probers, and LCD panel handling equipment.   Function: Achieving ultra-high-speed, ultra-precision positioning at the micron and even nanometer scales is crucial for the production of chips and electronic components.   4. Precision Measuring Instruments - "Fiery Eyes"   Purpose: Moving sensors or probes to scan and measure workpieces.   Specific Equipment: Coordinate Measuring Machines (CMMs), Image Measuring Machines, and Laser Scanners.   Function: Providing an extremely stable and precise reference motion track for the measuring head. Any slightest wobble will directly affect the measurement results, thus requiring the highest precision from linear guides.   5. Medical Equipment - "Lifeguards"   Purpose: Moving diagnostic or therapeutic components. Specific equipment: CT machines, MRI scanners, linear accelerators (radiotherapy equipment), surgical robots, and automated biochemical analyzers. Purpose: Achieve precise patient movement or precise positioning of treatment equipment, requiring smooth, quiet, and reliable operation.   II. Other Common Applications Automated production lines: Linear motion units in material handling, automated assembly lines, and logistics sorting systems. Laser processing equipment: Guides the movement of laser heads in laser cutting and laser welding machines. Printing equipment: Reciprocating motion of print heads in digital printers and large-format printers. Aerospace: Used as simulation test platforms for components such as aircraft wings and missile servos. Everyday items: Even high-end office furniture (such as height-adjustable desks) and smart home devices can be found in them.   To summarize its core applications: Its ultimate purpose is to ensure that a component on a device is fast, stable, accurate, and able to withstand loads. If you are interested in linear guides, please leave your information and I will contact you in time.
Contact Us
Add: Chenggong Village Committee, Lukou Town, Nanjing, Jiangsu, ChinaTechnology Park
Subscribe

Please Read On, Stay Posted, Subscribe, And We Welcome You To Tell Us What You Think

submit

Get Directions

YOUTUBE

Copyright @ 2024 Nanjing Chunxin Automation Equipment Co., Ltd., Limited. All Rights Reserved. Network Supported

Sitemap Blog Xml Privacy Policy

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

Contact